•addon

3HE13854AA-AO

Alcatel-Lucent Nokia[®] 3HE13854AA Compatible TAA Compliant 2x 100GBase-SR4 QSFP28-DD Transceiver (MMF, 850nm, 100m, MPO-24, DOM)

Features

- SFF-8665 Compliance
- MPO Connector
- Commercial Temperature 0 to 70 Celsius
- Multi-mode Fiber
- Hot Pluggable
- Excellent ESD Protection
- Metal with Lower EMI
- RoHS Compliant and Lead Free

Applications

- 2x100GBase Ethernet
- Access and Enterprise

Product Description

This Alcatel-Lucent Nokia[®] 3HE13854AA compatible QSFP28-DD transceiver provides 200GBase-SR4 throughput up to 100m over multi-mode fiber (MMF) using a wavelength of 850nm via an MPO-24 connector. It is guaranteed to be 100% compatible with the equivalent Alcatel-Lucent Nokia[®] transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

AddOn's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products."

Rev. 100821

Regulatory Compliance

- ESD to the Electrical PINs: compatible with MIL-STD-883E Method 3015.4
- ESD to the LC Receptacle: compatible with IEC 61000-4-3
- EMI/EMC compatible with FCC Part 15 Subpart B Rules, EN55022:2010
- Laser Eye Safety compatible with FDA 21CFR, EN60950-1& EN (IEC) 60825-1,2
- RoHS compliant with EU RoHS 2.0 directive 2015/863/EU

Absolute Maximum Ratings

Symbol	Min.	Тур.	Max.	Unit	Notes
Vcc	-0.5		3.6	V	
Ts	-40		+85	°C	
RH	5		85	%	1
ТС	0		70	°C	
DR		2x100		Gbps	
			70 (OM3) 100 (OM4)	М	
	Symbol Vcc Ts RH TC DR	Symbol Min. Vcc -0.5 Ts -40 RH 5 TC 0 DR	Symbol Min. Typ. Vcc -0.5 Ts -40 RH 5 Tc 0 DR 2x100	Symbol Min. Typ. Max. Vcc -0.5 3.6 Ts -40 +85 RH 5 85 Tc 0 70 DR 2x100 70 (OM3) 100 (OM4)	Symbol Min. Typ. Max. Unit Vcc -0.5 3.6 V Ts -40 +85 °C RH 5 85 % TC 0 70 °C DR 2x100 Gbps Gbps

Notes:

1. Non-condensing

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes		
Module Supply Voltage	VCC	3.13	3.3	3.47	V			
Module Supply Current (Tx and Rx)	lin			1440	mA			
Power Consumption	P _D			5	W			
Transmitter								
Data Input Differential Peak-to Peak Voltage Swing	Vin,pp	20		950	mVpp	1		
LOS Assert Threshold	Vin,pp LOS	120			mVpp	2		
Receiver								
Data Output Differential Peak-to Peak Voltage Swing, each lane	ΔVDO pp	300		800	mVpp	3		

Notes:

- 1. AC coupled internally.
- 2. Tx Data Input Differential Peak-to-Peak Voltage Swing
- 3. AC coupled with 100ohm differential output impedance.

Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit.	Notes
Transmitter						
Signaling rate, each lane			25.78125		GBd	
Center Wavelength	λ	840		860	nm	
Spectral Width – RMS	Δλ			0.6	nm	
Transmitter and dispersion eye closure (TDEC), each lane (max)				4.3	dB	
Output Optical Power: Average each lane	PO AVE	-8.4		2.4	dBm	
Output Optical Modulation Amplitude, each lane		-6.4		3	dBm	1
Extinction Ratio	ER	2			dB	
Output Optical Power: Disabled	PO_OFF			-30	dBm	
Eye Mask		Compliant with	n IEEE 802.3bm			
Receiver						
Signaling rate, each lane			25.78125		GBd	
Center wavelength, each lane	٨	840		860	nm	
Damage Threshold		3.4			dBm	
Receiver Power (OMA), each lane				3	dBm	
Maximum Average power at receiver input, each lane		-10.3		2.4	dBm	
Receiver Reflectance				-12	dB	
Stressed receiver sensitivity (OMA)				-5.2	dBm	2
LOS Assert		-19			dB	
LOS De-Assert				-11	dB	
LOS Hysteresis		0.5			dB	

Notes:

- 1. Even if the TDP<0.9dB, the OMA (min) must exceed this value
- 2. Measured with 25.78125-Gbps of PRBS-31 at 5x10-5 BER.

PIN D	PIN Descriptions								
PIN	Logic	Symbol	Description	Plug Sequence					
1		GND	Ground	1B					
2	CML-I	Tx2n	Transmitter Inverted Data Input	3B					
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	3B					
4		GND	Ground	1B					
5	CML-I	Tx4n	Transmitter Inverted Data Input	3B					
6	CML-I	Тх4р	Transmitter Non-Inverted Data Input	3B					
7		GND	Ground	1B					
8	LVTTL-I	ModSelL	Module Select	3B					
9	LVTTL-I	ResetL	Module Reset	3B					
10		VccRx	+3.3V Power Supply Receiver	2B					
11	LVCMOS-I/O	SCL	2-wire serial interface clock	3B					
12	LVCMOS-I/O	SDA	2-wire serial interface data	3B					
13		GND	Ground	1B					
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	3B					
15	CML-O	Rx3n	Receiver Inverted Data Output	3B					
16		GND	Ground	1B					
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	3B					
18	CML-O	Rx1n	Receiver Inverted Data Output	3B					
19		GND	Ground	1B					
20		GND	Ground	1B					
21	CML-O	Rx2n	Receiver Inverted Data Output	3B					
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	3B					
23		GND	Ground	1B					
24	CML-O	Rx4n	Receiver Inverted Data Output	3B					
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	3B					
26		GND	Ground	1B					
27	LVTTL-O	ModPrsL	Module Present	3B					
28	LVTTL-O	IntL	Interrupt	3B					
29		VccTx	+3.3V Power supply transmitter	2B					
30		Vcc1	+3.3V Power supply	2B					
31	LVTTL-I	InitMode	Initialization mode; In legacy QSFP applications, the InitMode pad is called LPMODE	3В					
32		GND	Ground	1B					
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input	3B					
34	CML-I	Tx3n	Transmitter Inverted Data Input	3B					
35		GND	Ground	1B					
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	3B					
37	CML-I	Tx1n	Transmitter Inverted Data Input	3B					

38		GND	Ground	1B
39		GND	Ground	1A
40	CML-I	Tx6n	Transmitter Inverted Data Input	3A
41	CML-I	Тх6р	Transmitter Non-Inverted Data Input	3A
42		GND	Ground	1A
43	CML-I	Tx8n	Transmitter Inverted Data Input	3A
44	CML-I	Тх8р	Transmitter Non-Inverted Data Input	3A
45		GND	Ground	1A
46		Reserved	For future use	3A
47		VS1	Module Vendor Specific 1	3A
48		VccRx1	3.3V Power Supply	2A
49		VS2	Module Vendor Specific 2	3A
50		VS3	Module Vendor Specific 3	3A
51		GND	Ground	1A
52	CML-O	Rx7p	Receiver Non-Inverted Data Output	3A
53	CML-O	Rx7n	Receiver Inverted Data Output	3A
54		GND	Ground	1A
55	CML-O	Rx5p	Receiver Non-Inverted Data Output	3A
56	CML-O	Rx5n	Receiver Inverted Data Output	3A
57		GND	Ground	1A
58		GND	Ground	1A
59	CML-O	Rx6n	Receiver Inverted Data Output	3A
60	CML-O	Rx6p	Receiver Non-Inverted Data Output	3A
61		GND	Ground	1A
62	CML-O	Rx8n	Receiver Inverted Data Output	3A
63	CML-O	Rx8p	Receiver Non-Inverted Data Output	3A
64		GND	Ground	1A
65		NC	No Connect	3A
66		Reserved	For future use	3A
67		VccTx1	3.3V Power Supply	2A
68		Vcc2	3.3V Power Supply	2A
69		Reserved	For Future Use	3A
70		GND	Ground	1A
71	CML-I	Тх7р	Transmitter Non-Inverted Data Input	3A
72	CML-I	Tx7n	Transmitter Inverted Data Input	3A
73		GND	Ground	1A
74	CML-I	Тх5р	Transmitter Non-Inverted Data Input	3A
75	CML-I	Tx5n	Transmitter Inverted Data Input	3A
76		GND	Ground	1A

Recommended Host Board Power Supply Filtering

Recommended Interface Circuit

QSFP-DD Optical Module

Mechanical Specifications

About AddOn Networks

In 1999, AddOn Networks entered the market with a single product. Our founders fulfilled a severe shortage for compatible, cost-effective optical transceivers that compete at the same performance levels as leading OEM manufacturers. Adhering to the idea of redefining service and product quality not previously had in the fiber optic networking industry, AddOn invested resources in solution design, production, fulfillment, and global support.

Combining one of the most extensive and stringent testing processes in the industry, an exceptional free tech support center, and a consistent roll-out of innovative technologies, AddOn has continually set industry standards of quality and reliability throughout its history.

Reliability is the cornerstone of any optical fiber network and is in engrained in AddOn's DNA. It has played a key role in nurturing the long-term relationships developed over the years with customers. AddOn remains committed to exceeding industry standards with certifications from ranging from NEBS Level 3 to ISO 9001:2005 with every new development while maintaining the signature reliability of its products.

U.S. Headquarters

Email: sales@addonnetworks.com

Telephone: +1 877.292.1701

Fax: 949.266.9273

Europe Headquarters

Email: salessupportemea@addonnetworks.com

Telephone: +44 1285 842070