

AC200-D13-005-AO

EdgecorE® AC200-D13-005 Compatible TAA 200GBase-DCO CFP2 Coherent Transceiver (SMF, 1528.77nm to 1568.36nm, 80km, LC)

Features

- CFP MSA 1.0 Compliance
- Duplex LC Connector
- Commercial Temperature 0 to 70 Celsius
- Single-mode Fiber
- Hot Pluggable
- Excellent ESD Protection
- Metal with Lower EMI
- RoHS Compliant and Lead Free

Applications

- 200GBase Ethernet
- Access and Enterprise

Product Description

This Edge-corE® AC200-D13-005 compatible CFP2 transceiver provides 200GBase-DWDM throughput up to 80km over single-mode fiber (SMF) using a wavelength of 1528.77nm to 1568.36nm via an LC connector. It is guaranteed to be 100% compatible with the equivalent Edge-corE® transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. It is built to meet or exceed the specifications of Edge-corE®, as well as to comply with MSA (Multi-Source Agreement) standards to ensure seamless network integration. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

AddOn's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products."

Regulatory Compliance

- ESD to the Electrical PINs: compatible with MIL-STD-883E Method 3015.4
- ESD to the LC Receptacle: compatible with IEC 61000-4-3
- EMI/EMC compatible with FCC Part 15 Subpart B Rules, EN55022:2010
- Laser Eye Safety compatible with FDA 21CFR, EN60950-1& EN (IEC) 60825-1,2
- RoHS compliant with EU RoHS 2.0 directive 2015/863/EU

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Supply Voltage	Vcc			3.6	V	
Input Voltage		-0.3		Vcc + 0.5	V	
RX Input Power	Prx			17	dBm	1
Operating Relative Humidity	RHop	5		85	%	2
Storage Temperature	Ttrs	-40		+85	°C	
Operating Case Temperature (long term)	Tcase	-5		70	°C	
Operating Case Temperature (short term)	Tcase	-5		75	°C	
Storage / Transportation RH	RHst	5		93	%	

Note:

- 1. This should be considered an operating fault condition experienced for only short timeframe and should not result in damage; above it could risk damage.
- 2. Constant humidity ratio of 0.026 kg water/kg dry air not to be exceeded according to GR-63.

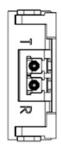
Power Supplies

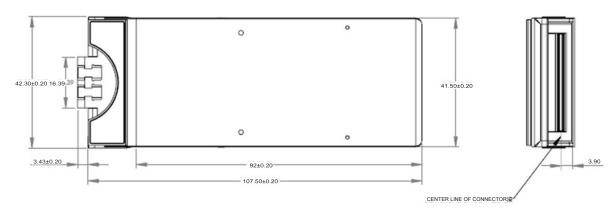
Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
+3.3V Supply Voltage	Vcc	3.2	3.3	3.4	V	
+3.3 V Supply current (200G, 16QAM with SD-FEC)	Icc			6.1	А	
+3.3 V Supply current -5°C to 70°C	Icc			TBD	А	
Power dissipation -5°C to 70°C	Pdiss					
QPSK with HDFEC			15.5		W	
QPSK with SDFEC			17.5		W	
8QAM			21.5		W	
16QAM			20.5		W	

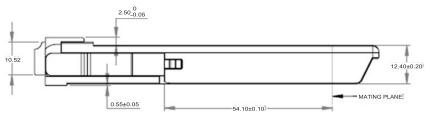
Optical Characteristics

Parameter	Conditions	Min.	Тур.	Max.	Unit	Notes
Transmitter		_	_	_	_	_
		1 4 5 4 5		1.0	T 1	
Baud rate	Per IQ modulator	27.95		43	GBaud	
Mean modulated output power	DP_QPSK	-5		2	dBm	
Mean modulated output power	DP-8QAM	-5		2	dBm	
Mean modulated output power	DP-16QAM	-5		2	dBm	
Shuttered output power				-35	dBm	
Wavelength range		1528.77		1568.36	nm	
Frequency range		191.150		196.100	THz	
Default channel grid spacing	Tunable across C-band		50		GHz	
Fine tune frequency resolution		0.1			GHz	
Wavelength deviation	± 20 pm	-1.5		+1.5	GHz	
On-grid tuning range	Unshuttered tuning	-6		+6	GHz	
Lorentzian linewidth	Tx and LO		300		kHz	
OSNR	Inband	35			dB	
OSNR	Outband	45			dB	
Optical transmitter turn on time 1	Warm start			1	S	
Optical transmitter turn on time 1	Cold start			60	S	
Optical transmitter turn off time	From TX_DIS activated			10	ms	
Transmitter channel tuning				60	S	
Optical return loss	Towards the module	27			dB	
Receiver						
Frequency range		191.150		196.100	THz	
Average optical input power		-20		+13	dBm	
Receiver dynamic range		-20		0	dBm	
VOA range	On input signal	10			dB	
VOA step size				0.4	dB	
VOA response time				100	ms	
		2.5				
Signal input monitor accuracy		-2.5		+2.5	dB	
Optical return loss				27	dB	
Required OSNR DP-QPSK (10-15 post FEC error rate)	SDFEC		11.4		dB/0.1 nm	
Required OSNR DP-8QAM (10-15 post	SDFEC		18.1		dB/0.1nm	
FEC error rate) Required OSNR DP-16QAM (10-15	SDFEC		19.8		dB/0.1nm	
post FEC error rate)	351 20		15.0			
Chromatic dispersion tolerance	QPSK 8QAM 16QAM			40 20	ns/nm	
	TOUAIVI			16		

DGD tolerance	QPSK 8QAM		90	ps ps ps	
	16QAM		45		
			45		
SOPMD tolerance	QPSK 8QAM	2500		ps^2 ps^2	
	16QAM	2500		ps^2	
		1000			
Acquisition time			30	ms	


Notes:


1. Absolute tuning speed dependent on required power/wavelength mask requirements


Pin Descriptions

Botton	Bottom Row		Top Row		Bottom Row		ow .
Pin	Name	Pin	Name	Pin	Name	Pin	Name
1	GND	104	GND	27	MOD_ABS	78	(REFCLKp)
2	TX_OHIOn	103	TX1_0n	28	MOD_RSTn	77	GND
3	TX_OHIOp	102	TX1_0p	29	GLB_ALRMn	76	RX1_0n
4	GND	101	GND	30	GND	75	RX1_0p
5	RX_OHIOn	100	TX0_3n	31	MDC	74	GND
6	RX_OHIOp	99	TX0_3p	32	MDIO	73	RX0_3n
7	3.3V_GND	98	GND	33	PRTADR0	72	RXO_3p
8	3.3V_GND	97	TX0_2n	34	PRTADR1	71	GND
9	3.3V	96	TX0_2p	35	PRTADR2	70	RXO_2n
10	3.3V	95	GND	36	SWDIO	69	RX0_2p
11	3.3V	94	TX1_1n	37	BER threshold alarm	68	GND
12	3.3V	93	TX1_1p	38	DSP_UARTTO_TX	67	RX1_1n
13	3.3V_GND	92	GND	39	3.3V_GND	66	RX1_1p
14	3.3V_GND	91	TX1_2n	40	3.3V_GND	65	GND
15	HOST_INT	90	TX1_2p	41	3.3V	64	RX1_2n
16	SWCLK	89	GND	42	3.3V	63	RX1_2p
17	PRG_CNTL1	88	TX0_1n	43	3.3V	62	GND
18	PRG_CNTL2	87	TX0_1p	44	3.3V	61	RX0_1n
19	PRG_CNTL3	86	GND	45	3.3V_GND	60	RX0_1p
20	PRG_ALRM1	85	TX0_0n	46	3.3V_GND	59	GND
21	PRG_ALRM2	84	TX0_0p	47	OHIO_REFCLKn	58	RX0_0n
22	PRG_ALRM3	83	GND	48	OHIO_REFCLKp	57	RXO_Op
23	GND	82	TX1_3n	49	GND	56	GND
24	TX_DIS	81	TX1_3p	50	MUX_UART_RX	55	RX1_3n
25	RX_LOS	80	GND	51	MUX_UART_TX	54	RX1_3p
26	MOD_LOPWR	79	(REFCLKn)	52	GND	53	GND

Mechanical Specifications

About AddOn Networks

In 1999, AddOn Networks entered the market with a single product. Our founders fulfilled a severe shortage for compatible, cost-effective optical transceivers that compete at the same performance levels as leading OEM manufacturers. Adhering to the idea of redefining service and product quality not previously had in the fiber optic networking industry, AddOn invested resources in solution design, production, fulfillment, and global support.

Combining one of the most extensive and stringent testing processes in the industry, an exceptional free tech support center, and a consistent roll-out of innovative technologies, AddOn has continually set industry standards of quality and reliability throughout its history.

Reliability is the cornerstone of any optical fiber network and is in engrained in AddOn's DNA. It has played a key role in nurturing the long-term relationships developed over the years with customers. AddOn remains committed to exceeding industry standards with certifications from ranging from NEBS Level 3 to ISO 9001:2005 with every new development while maintaining the signature reliability of its products.

U.S. Headquarters

Email: sales@addonnetworks.com

Telephone: +1 877.292.1701

Fax: 949.266.9273

Europe Headquarters

Email: salessupportemea@addonnetworks.com

Telephone: +44 1285 842070